Il training cognitivo nella Malattia di Parkinson: una revisione della letteratura

Autori

  • Chiara Giacobbe Dipartimento di Psicologia, Università della Campania “Luigi Vanvitelli”, Caserta, Italia
  • Giovanni Luca Di Benedetto Dipartimento di Psicologia, Università della Campania “Luigi Vanvitelli”, Caserta, Italia
  • Alfonsina D'Iorio Dipartimento di Psicologia, Università della Campania “Luigi Vanvitelli”, Caserta, Italia
  • Gabriella Santangelo Dipartimento di Psicologia, Università degli studi della Campania “Luigi Vanvitelli”, Caserta, Italia. Autore responsabile per la corrispondenza: gabriella.santangelo@unicampania.it

Parole chiave:

Malattia di Parkinson, Training Cognitivo, Socially Assistive Robots, trattamento non farmacologico, funzioni esecutive

Abstract

La Malattia di Parkinson (MP) è una patologia neurodegenerativa che si manifesta attraverso sintomi motori e non motori, inclusi deficit cognitivi che hanno un impatto significativo sulla qualità di vita dei pazienti e dei loro caregivers. La gestione dei deficit cognitivi con trattamenti farmacologici e non farmacologici è cruciale, poiché essi possono rappresentare i precursori di quadri cognitivi più gravi come il declino cognitivo lieve (MCI) fino alla demenza. Sebbene il trattamento farmacologico mostri evidenze limitate, gli interventi non farmacologici, come i “socially assistive robots” (SAR) e il training cognitivo (TC), possono essere strategie di intervento innovative ed incoraggianti. In letteratura, alcuni studi hanno evidenziato che l’uso dei SAR riduce la gravità dell’apatia e stimola l'interazione sociale nei pazienti con demenza e MCI. Inoltre, è stato dimostrato che i pazienti con declino cognitivo considerano piacevole la presenza e l’interazione con i SAR e mostrano un miglioramento delle loro prestazioni cognitive. Oltre all’utilizzo dei SAR, alcuni studi su pazienti con demenza e MCI e con MP hanno evidenziato un miglioramento delle funzioni esecutive, dell’attenzione e della memoria dopo l’impiego di TC. La revisione sistematica evidenzia che gli interventi più efficaci risultano essere quelli computerizzati (TCC), sia standardizzati che personalizzati, svolti con o senza l’intervento di un operatore. La combinazione di TC e SAR appare dunque una prospettiva promettente, offrendo miglioramenti significativi sugli aspetti sia cognitivi che emotivi e relazionali. Nonostante ciò, futuri studi sono necessari per la ricerca di un equilibrio tra standardizzazione e personalizzazione dei protocolli di trattamento con TCC e SAR, al fine di generalizzare i risultati ottenuti e valutare a lungo termine gli effetti di entrambi gli interventi.

 

doi: 10.53240/2024topic1.011.001

Riferimenti bibliografici

Aarsland, D., Bronnick, K., Williams-Gray, C., Weintraub, D., Marder, K., Kulisevsky, J., ... & Emre, M. (2010). Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology, 75(12), 1062–1069. doi: 10.1212/WNL.0b013e3181f39d0e.

Abdi, J., Al-Hindawi, A., Ng, T., & Vizcaychipi, M.P. (2018). Scoping review on the use of socially assistive robot technology in elderly care. BMJ open, 8(2), e018815. doi: 10.1136/bmjopen-2017-018815.

Alloni, A., Quaglini, S., Panzarasa, S., Sinforiani, E., & Bernini, S. (2018). Evaluation of an ontology-based system for computerized cognitive rehabilitation. Int. J. Med. Inform. 115, 64–72. doi: 10.1016/j.ijmedinf. 2018.04.005.

Alzahrani, H., & Venneri, A. (2018). Cognitive rehabilitation in Parkinson’s disease: A systematic review. Journal of Parkinsons Disease, 8 (2), 233–245. doi: 10.3233/jpd-171250.

Bar-On, I., Mayo, G., & Levy-Tzedek, S. (2023). Socially Assistive Robots for Parkinson's Disease: Needs, Attitudes and Specific Applications as Identified by Healthcare Professionals. Journal of Human-Robot Interaction, 12(1), Article 11. doi: 10.1145/3570168.

Belleville, S. (2008). Cognitive training for persons with mild cognitive impairment. International Psychogeriatrics, 20(1), 57-66. doi: 10.1017/S104161020700631X.

Bemelmans, R., Gelderblom, G.J., Jonker, P., & de Witte, L. (2012). Socially assistive robots in elderly care: a systematic review into effects and effectiveness. Journal of the American Medical Directors Association, 13(2), 114–120.e1. doi: 10.1016/j.jamda.2010.10.002.

Bernini, S., Alloni, A., Panzarasa, S., Picascia, M., Quaglini, S., Tassorelli, C., & Sinforiani, E. (2019). A computer-based cognitive training in Mild Cognitive Impairment in Parkinson's Disease. NeuroRehabilitation, 44(4), 555–567. doi: 10.3233/NRE-192714.

Biundo, R., Weis, L., Fiorenzato, E., Gentile, G., Giglio, M., Schifano, R., ... & Antonini, A. (2015). Double-blind Randomized Trial of tDCS Versus Sham in Parkinson Patients With Mild Cognitive Impairment Receiving Cognitive Training. Brain stimulation, 8(6), 1223–1225. doi: 10.1016/j.brs.2015.07.043.

Calleo, J., Burrows, C., Levin, H., Marsh, L., Lai, E., & York, M.K. (2012). Cognitive rehabilitation for executive dysfunction in Parkinson’s disease: Application and current directions. Parkinsons Disease, 512892. doi: 10.1155/2012/512892.

Cerasa, A., Gioia, M.C., Salsone, M., Donzuso, G., Chiriaco, C., Realmuto, S., ... & Quattrone, A. (2014). Neurofunctional correlates of attention rehabilitation in Parkinson's disease: an explorative study. Neurological sciences: official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 35(8), 1173–1180. doi: 10.1007/s10072-014-1666-z.

Esposito, A., Vinciarelli, A., & Cordasco, G. (2022). A Research Agenda for Dementia Care: Prevention, Risk Mitigation and Personalized Interventions. In: Tsihrintzis, G.A., Virvou, M., Esposito, A., Jain, L.C. (eds) Advances in Assistive Technologies. Learning and Analytics in Intelligent Systems, vol 28. Springer, Cham. doi: 10.1007/978-3-030-87132-1_3.

Feil-Seifer, D., & Matarić, M. (2005). Defining Socially Assistive Robotics. Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics. 465 - 468. doi: 10.1109/ICORR.2005.1501143.

Figliano, G., Manzi, F., Tacci, A.L., Marchetti, A., & Massaro, D. (2023). Ageing society and the challenge for social robotics: A systematic review of Socially Assistive Robotics for MCI patients. PLOS ONE, 18(11), e0293324. doi: 10.1371/journal.pone.0293324.

Gavelin, H.M., Domellöf, M.E., Leung, I., Neely, A.S., Launder, N.H., Nategh, L., ... & Lampit, A. (2022). Computerized cognitive training in Parkinson’s disease: A systematic review and meta-analysis. Ageing Research Reviews, 80, 101671. doi: 10.1016/j.arr.2022.101671.

Guglietti, B., Hobbs, D., & Collins-Praino, L.E. (2021). Optimizing cognitive training for the treatment of cognitive dysfunction in Parkinson’s disease: current limitations and future directions. Frontiers in Aging Neuroscience, 13, 709484. doi: 10.3389/fnagi.2021.709484.

Hill, N.T., Mowszowski, L., Naismith, S.L., Chadwick, V.L., Valenzuela, M., & Lampit, A. (2017). Computerized cognitive training in older adults with mild cognitive impairment or dementia: a systematic review and meta-analysis. American Journal of Psychiatry, 174(4), 329-340. doi: 10.1176/appi.ajp.2016.16030360.

Hindle, J.V., Petrelli, A., Clare, L., & Kalbe, E. (2013). Nonpharmacological enhancement of cognitive function in Parkinson's disease: a systematic review. Movement disorders: official journal of the Movement Disorder Society, 28(8), 1034–1049. doi: 10.1002/mds.25377.

Janvin, C.C., Larsen, J.P., Aarsland, D., & Hugdahl, K. (2006). Subtypes of mild cognitive impairment in Parkinson's disease: progression to dementia. Movement disorders: official journal of the Movement Disorder Society, 21(9), 1343–1349. doi: 10.1002/mds.20974.

Lawrence, B.J., Gasson, N., Bucks, R.S., Troeung, L., & Loftus, A.M. (2017). Cognitive training and non-invasive brain stimulation for cognition in Parkinson’s disease: A meta-analysis. Neurorehabilitation and Neural Repair. 31(7), 597–608. doi: 10.1177/1545968317712468.

Leung, I.H., Walton, C.C., Hallock, H., Lewis, S.J., Valenzuela, M., & Lampit, A. (2015). Cognitive training in Parkinson disease: A systematic review and meta-analysis. Neurology. 85(21), 1843–1851. doi: 10.1212/wnl.0000000000002145.

Mowszowski, L., Batchelor, J., & Naismith, S.L. (2010). Early intervention for cognitive decline: can cognitive training be used as a selective prevention technique?. International psychogeriatrics, 22(4), 537–548. doi: 10.1017/S1041610209991748.

Nousia, A., Martzoukou, M., Tsouris, Z., Siokas, V., Aloizou, A. M., Liampas, I., ... & Dardiotis, E. (2020). The beneficial effects of computer-based cognitive training in Parkinson’s disease: a systematic review. Archives of Clinical Neuropsychology, 35(4), 434-447. doi: 10.1093/arclin/acz080.

París, A.P., Saleta, H.G., de la Cruz Crespo Maraver, M., Silvestre, E., Freixa, M.G., Torrellas, C.P., … & Bayés, A.R. (2011). Blind randomized controlled study of the efficacy of cognitive training in Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society, 26(7), 1251–1258. doi: 10.1002/mds.23688.

Petrelli, A., Kaesberg, S., Barbe, M.T., Timmermann, L., Fink, G.R., Kessler, J., & Kalbe, E. (2014). Effects of cognitive training in Parkinson's disease: a randomized controlled trial. Parkinsonism & related disorders, 20(11), 1196–1202. doi: 10.1016/j.parkreldis.2014.08.023.

Petrelli, A., Kaesberg, S., Barbe, M.T., Timmermann, L., Rosen, J.B., Fink, G.R., … & Kalbe, E. (2015). Cognitive training in Parkinson's disease reduces cognitive decline in the long term. European journal of neurology, 22(4), 640–647. doi: 10.1111/ene.12621.

Prenger, M.T.M., Madray, R., Van Hedger, K., Anello, M., & MacDonald, P.A. (2020). Social Symptoms of Parkinson's Disease. Parkinson's disease, 2020, 8846544. doi: 10.1155/2020/8846544.

Raz, D., Barkan-Slater, S., Baum-Cohen, I., Vissel, G., Lahav-Raz, Y., Shapiro, A., & Levy-Tzedek, S. (2023). A novel socially assistive robotic platform for cognitive-motor exercises for individuals with Parkinson's Disease: a participatory-design study from conception to feasibility testing with end users. Frontiers in robotics and AI, 10, 1267458. doi: 10.3389/frobt.2023.1267458.

Rolinski, M., Fox, C., Maidment, I., & McShane, R. (2012). Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson's disease dementia and cognitive impairment in Parkinson's disease. The Cochrane database of systematic reviews, 2012(3), CD006504. doi: 10.1002/14651858.CD006504.pub2.

Rosenthal, E., Brennan, L., Xie, S., Hurtig, H., Milber, J., Weintraub, D., ... & Siderowf, A. (2010). Association between cognition and function in patients with Parkinson disease with and without dementia. Movement disorders: official journal of the Movement Disorder Society, 25(9), 1170–1176. doi: 10.1002/mds.23073.

Schrag, A., Jahanshahi, M. & Quinn, N. (2000). What contributes to quality of life in patients with Parkinson’s disease? J Neurol Neurosurg Psychiatr. 69, 308–312. doi: 10.1136/jnnp.69.3.308.

Schüssler, S., Zuschnegg, J., Paletta, L., Lodron, G., Steiner, J., Pansy‐Resch, S., ... & Holter, M. (2021). Effects of coach robot pepper versus tablet training on psychosocial and physical outcomes of persons with dementia: A mixed‐methods study. Alzheimer's & Dementia, 17. doi: 10.1002/alz.053453.

Seppi, K., Weintraub, D., Coelho, M., Perez-Lloret, S., Fox, S.H., Katzenschlager, R., ... & Sampaio, C. (2011). The Movement Disorder Society Evidence-Based Medicine Review Update: Treatments for the non-motor symptoms of Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society, 26 Suppl 3(0 3), S42–S80. doi: 10.1002/mds.23884.

Valentí Soler, M., Agüera-Ortiz, L., Olazarán Rodríguez, J., Mendoza Rebolledo, C., Pérez Muñoz, A., Rodríguez Pérez, I., ... & Martínez Martín, P. (2015). Social robots in advanced dementia. Frontiers in aging neuroscience, 7, 133. doi: 10.3389/fnagi.2015.00133.

Van deWeijer, S.C.F., Hommel, A., Bloem, B.R., Nonnekes, J., & De Vries, N.M. (2018). Promising non-pharmacological therapies in PD: Targeting late-stage disease and the role of computer based cognitive training. Parkinsonism & Related Disorders, 46(Suppl 1), S42–s46. doi: 10.1016/j.parkreldis.2017.09.002.

Vlagsma, T.T., Duits, A.A., Dijkstra, H.T., Van Laar, T., & Spikman, J. M. (2020). Effectiveness of reset; a strategic executive treatment for executive dysfunctioning in patients with Parkinson’s disease. Neuropsychol. Rehabil. 30, 67–84. doi: 10.1080/09602011.2018.1452761.

Williams-Gray, C.H., Evans, J. R., Goris, A., Foltynie, T., Ban, M., Robbins, T.W., ... & Barker, R. A. (2009). The distinct cognitive syndromes of Parkinson's disease: 5 year follow-up of the CamPaIGN cohort. Brain: a journal of neurology, 132(Pt 11), 2958–2969. doi: 10.1093/brain/awp245.

Wilson, J.R., Tickle-Degnen, L., & Scheutz, M. (2020). Challenges in Designing a Fully Autonomous Socially Assistive Robot for People with Parkinson’s Disease. Journal of Human-Robot Interaction, 9(3), Article 20. doi: 10.1145/3379179.

Zimmermann, R., Gschwandtner, U., Benz, N., Hatz, F., Schindler, C., Taub, E., & Fuhr, P. (2014). Cognitive training in Parkinson disease: cognition-specific vs nonspecific computer training. Neurology, 82(14), 1219–1226. doi: 10.1212/WNL.0000000000000287.

##submission.downloads##

Pubblicato

2024-01-30

Come citare

Giacobbe, C., Di Benedetto, G. L., D’Iorio, A., & Santangelo, G. (2024). Il training cognitivo nella Malattia di Parkinson: una revisione della letteratura. TOPIC - Temi Di Psicologia dell’Ordine Degli Psicologi Della Campania, 3(1). Recuperato da https://topic.oprc.it/index.php/topic/article/view/77