Cognitive training in parkinson's disease: a literature review

Authors

  • Chiara Giacobbe Dipartimento di Psicologia, Università della Campania “Luigi Vanvitelli”, Caserta, Italia
  • Giovanni Luca Di Benedetto Dipartimento di Psicologia, Università della Campania “Luigi Vanvitelli”, Caserta, Italia
  • Alfonsina D'Iorio Dipartimento di Psicologia, Università della Campania “Luigi Vanvitelli”, Caserta, Italia
  • Gabriella Santangelo Dipartimento di Psicologia, Università degli studi della Campania “Luigi Vanvitelli”, Caserta, Italia. Autore responsabile per la corrispondenza: gabriella.santangelo@unicampania.it

Keywords:

Parkinson’s disease, cognitive training, Socially Assistive Robots, non-pharmacological treatment, executive functions

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder that manifests itself through motor and non-motor symptoms, including cognitive deficits, that have a significant impact on the quality of life of patients and their caregivers. The management of cognitive deficits with pharmacological and non-pharmacological treatments is crucial, as they can be precursors of more severe cognitive conditions such as mild cognitive decline (MCI) up to dementia. Although pharmacological treatment shows limited evidence, non-pharmacological interventions, such as socially assistive robots (SAR) and cognitive training (CT), may be innovative and encouraging intervention strategies. In the literature, studies have shown that the use of SARs reduces the severity of apathy and stimulates social interaction in patients with dementia and MCI. Furthermore, it has been shown that patients with cognitive decline consider the presence and interaction with SAR pleasant and show an improvement in their cognitive performance.                                                                                                                                In addition to the use of SARs, studies on patients with dementia and MCI as well as with PD have shown an improvement in executive functions, attention and memory after the use of CT. The systematic review shows that the most effective interventions appear to be computer-based interventions (TCC), both standardised and personalised, carried out with or without the intervention of a caregiver. The combination of CT and SAR thus appears to be a promising prospect, offering significant improvements on both cognitive and emotional and relational aspects. Nevertheless, future studies are needed to find a balance between standardisation and customisation of treatment protocols with TCC and SAR, in order to generalise the results obtained and evaluate the long-term effects of both interventions.

 

doi: 10.53240/2024topic1.011.001

References

Aarsland, D., Bronnick, K., Williams-Gray, C., Weintraub, D., Marder, K., Kulisevsky, J., ... & Emre, M. (2010). Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology, 75(12), 1062–1069. doi: 10.1212/WNL.0b013e3181f39d0e.

Abdi, J., Al-Hindawi, A., Ng, T., & Vizcaychipi, M.P. (2018). Scoping review on the use of socially assistive robot technology in elderly care. BMJ open, 8(2), e018815. doi: 10.1136/bmjopen-2017-018815.

Alloni, A., Quaglini, S., Panzarasa, S., Sinforiani, E., & Bernini, S. (2018). Evaluation of an ontology-based system for computerized cognitive rehabilitation. Int. J. Med. Inform. 115, 64–72. doi: 10.1016/j.ijmedinf. 2018.04.005.

Alzahrani, H., & Venneri, A. (2018). Cognitive rehabilitation in Parkinson’s disease: A systematic review. Journal of Parkinsons Disease, 8 (2), 233–245. doi: 10.3233/jpd-171250.

Bar-On, I., Mayo, G., & Levy-Tzedek, S. (2023). Socially Assistive Robots for Parkinson's Disease: Needs, Attitudes and Specific Applications as Identified by Healthcare Professionals. Journal of Human-Robot Interaction, 12(1), Article 11. doi: 10.1145/3570168.

Belleville, S. (2008). Cognitive training for persons with mild cognitive impairment. International Psychogeriatrics, 20(1), 57-66. doi: 10.1017/S104161020700631X.

Bemelmans, R., Gelderblom, G.J., Jonker, P., & de Witte, L. (2012). Socially assistive robots in elderly care: a systematic review into effects and effectiveness. Journal of the American Medical Directors Association, 13(2), 114–120.e1. doi: 10.1016/j.jamda.2010.10.002.

Bernini, S., Alloni, A., Panzarasa, S., Picascia, M., Quaglini, S., Tassorelli, C., & Sinforiani, E. (2019). A computer-based cognitive training in Mild Cognitive Impairment in Parkinson's Disease. NeuroRehabilitation, 44(4), 555–567. doi: 10.3233/NRE-192714.

Biundo, R., Weis, L., Fiorenzato, E., Gentile, G., Giglio, M., Schifano, R., ... & Antonini, A. (2015). Double-blind Randomized Trial of tDCS Versus Sham in Parkinson Patients With Mild Cognitive Impairment Receiving Cognitive Training. Brain stimulation, 8(6), 1223–1225. doi: 10.1016/j.brs.2015.07.043.

Calleo, J., Burrows, C., Levin, H., Marsh, L., Lai, E., & York, M.K. (2012). Cognitive rehabilitation for executive dysfunction in Parkinson’s disease: Application and current directions. Parkinsons Disease, 512892. doi: 10.1155/2012/512892.

Cerasa, A., Gioia, M.C., Salsone, M., Donzuso, G., Chiriaco, C., Realmuto, S., ... & Quattrone, A. (2014). Neurofunctional correlates of attention rehabilitation in Parkinson's disease: an explorative study. Neurological sciences: official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 35(8), 1173–1180. doi: 10.1007/s10072-014-1666-z.

Esposito, A., Vinciarelli, A., & Cordasco, G. (2022). A Research Agenda for Dementia Care: Prevention, Risk Mitigation and Personalized Interventions. In: Tsihrintzis, G.A., Virvou, M., Esposito, A., Jain, L.C. (eds) Advances in Assistive Technologies. Learning and Analytics in Intelligent Systems, vol 28. Springer, Cham. doi: 10.1007/978-3-030-87132-1_3.

Feil-Seifer, D., & Matarić, M. (2005). Defining Socially Assistive Robotics. Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics. 465 - 468. doi: 10.1109/ICORR.2005.1501143.

Figliano, G., Manzi, F., Tacci, A.L., Marchetti, A., & Massaro, D. (2023). Ageing society and the challenge for social robotics: A systematic review of Socially Assistive Robotics for MCI patients. PLOS ONE, 18(11), e0293324. doi: 10.1371/journal.pone.0293324.

Gavelin, H.M., Domellöf, M.E., Leung, I., Neely, A.S., Launder, N.H., Nategh, L., ... & Lampit, A. (2022). Computerized cognitive training in Parkinson’s disease: A systematic review and meta-analysis. Ageing Research Reviews, 80, 101671. doi: 10.1016/j.arr.2022.101671.

Guglietti, B., Hobbs, D., & Collins-Praino, L.E. (2021). Optimizing cognitive training for the treatment of cognitive dysfunction in Parkinson’s disease: current limitations and future directions. Frontiers in Aging Neuroscience, 13, 709484. doi: 10.3389/fnagi.2021.709484.

Hill, N.T., Mowszowski, L., Naismith, S.L., Chadwick, V.L., Valenzuela, M., & Lampit, A. (2017). Computerized cognitive training in older adults with mild cognitive impairment or dementia: a systematic review and meta-analysis. American Journal of Psychiatry, 174(4), 329-340. doi: 10.1176/appi.ajp.2016.16030360.

Hindle, J.V., Petrelli, A., Clare, L., & Kalbe, E. (2013). Nonpharmacological enhancement of cognitive function in Parkinson's disease: a systematic review. Movement disorders: official journal of the Movement Disorder Society, 28(8), 1034–1049. doi: 10.1002/mds.25377.

Janvin, C.C., Larsen, J.P., Aarsland, D., & Hugdahl, K. (2006). Subtypes of mild cognitive impairment in Parkinson's disease: progression to dementia. Movement disorders: official journal of the Movement Disorder Society, 21(9), 1343–1349. doi: 10.1002/mds.20974.

Lawrence, B.J., Gasson, N., Bucks, R.S., Troeung, L., & Loftus, A.M. (2017). Cognitive training and non-invasive brain stimulation for cognition in Parkinson’s disease: A meta-analysis. Neurorehabilitation and Neural Repair. 31(7), 597–608. doi: 10.1177/1545968317712468.

Leung, I.H., Walton, C.C., Hallock, H., Lewis, S.J., Valenzuela, M., & Lampit, A. (2015). Cognitive training in Parkinson disease: A systematic review and meta-analysis. Neurology. 85(21), 1843–1851. doi: 10.1212/wnl.0000000000002145.

Mowszowski, L., Batchelor, J., & Naismith, S.L. (2010). Early intervention for cognitive decline: can cognitive training be used as a selective prevention technique?. International psychogeriatrics, 22(4), 537–548. doi: 10.1017/S1041610209991748.

Nousia, A., Martzoukou, M., Tsouris, Z., Siokas, V., Aloizou, A. M., Liampas, I., ... & Dardiotis, E. (2020). The beneficial effects of computer-based cognitive training in Parkinson’s disease: a systematic review. Archives of Clinical Neuropsychology, 35(4), 434-447. doi: 10.1093/arclin/acz080.

París, A.P., Saleta, H.G., de la Cruz Crespo Maraver, M., Silvestre, E., Freixa, M.G., Torrellas, C.P., … & Bayés, A.R. (2011). Blind randomized controlled study of the efficacy of cognitive training in Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society, 26(7), 1251–1258. doi: 10.1002/mds.23688.

Petrelli, A., Kaesberg, S., Barbe, M.T., Timmermann, L., Fink, G.R., Kessler, J., & Kalbe, E. (2014). Effects of cognitive training in Parkinson's disease: a randomized controlled trial. Parkinsonism & related disorders, 20(11), 1196–1202. doi: 10.1016/j.parkreldis.2014.08.023.

Petrelli, A., Kaesberg, S., Barbe, M.T., Timmermann, L., Rosen, J.B., Fink, G.R., … & Kalbe, E. (2015). Cognitive training in Parkinson's disease reduces cognitive decline in the long term. European journal of neurology, 22(4), 640–647. doi: 10.1111/ene.12621.

Prenger, M.T.M., Madray, R., Van Hedger, K., Anello, M., & MacDonald, P.A. (2020). Social Symptoms of Parkinson's Disease. Parkinson's disease, 2020, 8846544. doi: 10.1155/2020/8846544.

Raz, D., Barkan-Slater, S., Baum-Cohen, I., Vissel, G., Lahav-Raz, Y., Shapiro, A., & Levy-Tzedek, S. (2023). A novel socially assistive robotic platform for cognitive-motor exercises for individuals with Parkinson's Disease: a participatory-design study from conception to feasibility testing with end users. Frontiers in robotics and AI, 10, 1267458. doi: 10.3389/frobt.2023.1267458.

Rolinski, M., Fox, C., Maidment, I., & McShane, R. (2012). Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson's disease dementia and cognitive impairment in Parkinson's disease. The Cochrane database of systematic reviews, 2012(3), CD006504. doi: 10.1002/14651858.CD006504.pub2.

Rosenthal, E., Brennan, L., Xie, S., Hurtig, H., Milber, J., Weintraub, D., ... & Siderowf, A. (2010). Association between cognition and function in patients with Parkinson disease with and without dementia. Movement disorders: official journal of the Movement Disorder Society, 25(9), 1170–1176. doi: 10.1002/mds.23073.

Schrag, A., Jahanshahi, M. & Quinn, N. (2000). What contributes to quality of life in patients with Parkinson’s disease? J Neurol Neurosurg Psychiatr. 69, 308–312. doi: 10.1136/jnnp.69.3.308.

Schüssler, S., Zuschnegg, J., Paletta, L., Lodron, G., Steiner, J., Pansy‐Resch, S., ... & Holter, M. (2021). Effects of coach robot pepper versus tablet training on psychosocial and physical outcomes of persons with dementia: A mixed‐methods study. Alzheimer's & Dementia, 17. doi: 10.1002/alz.053453.

Seppi, K., Weintraub, D., Coelho, M., Perez-Lloret, S., Fox, S.H., Katzenschlager, R., ... & Sampaio, C. (2011). The Movement Disorder Society Evidence-Based Medicine Review Update: Treatments for the non-motor symptoms of Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society, 26 Suppl 3(0 3), S42–S80. doi: 10.1002/mds.23884.

Valentí Soler, M., Agüera-Ortiz, L., Olazarán Rodríguez, J., Mendoza Rebolledo, C., Pérez Muñoz, A., Rodríguez Pérez, I., ... & Martínez Martín, P. (2015). Social robots in advanced dementia. Frontiers in aging neuroscience, 7, 133. doi: 10.3389/fnagi.2015.00133.

Van deWeijer, S.C.F., Hommel, A., Bloem, B.R., Nonnekes, J., & De Vries, N.M. (2018). Promising non-pharmacological therapies in PD: Targeting late-stage disease and the role of computer based cognitive training. Parkinsonism & Related Disorders, 46(Suppl 1), S42–s46. doi: 10.1016/j.parkreldis.2017.09.002.

Vlagsma, T.T., Duits, A.A., Dijkstra, H.T., Van Laar, T., & Spikman, J. M. (2020). Effectiveness of reset; a strategic executive treatment for executive dysfunctioning in patients with Parkinson’s disease. Neuropsychol. Rehabil. 30, 67–84. doi: 10.1080/09602011.2018.1452761.

Williams-Gray, C.H., Evans, J. R., Goris, A., Foltynie, T., Ban, M., Robbins, T.W., ... & Barker, R. A. (2009). The distinct cognitive syndromes of Parkinson's disease: 5 year follow-up of the CamPaIGN cohort. Brain: a journal of neurology, 132(Pt 11), 2958–2969. doi: 10.1093/brain/awp245.

Wilson, J.R., Tickle-Degnen, L., & Scheutz, M. (2020). Challenges in Designing a Fully Autonomous Socially Assistive Robot for People with Parkinson’s Disease. Journal of Human-Robot Interaction, 9(3), Article 20. doi: 10.1145/3379179.

Zimmermann, R., Gschwandtner, U., Benz, N., Hatz, F., Schindler, C., Taub, E., & Fuhr, P. (2014). Cognitive training in Parkinson disease: cognition-specific vs nonspecific computer training. Neurology, 82(14), 1219–1226. doi: 10.1212/WNL.0000000000000287.

Published

2024-01-30

How to Cite

Giacobbe, C., Di Benedetto, G. L., D’Iorio, A., & Santangelo, G. (2024). Cognitive training in parkinson’s disease: a literature review. TOPIC - Temi Di Psicologia dell’Ordine Degli Psicologi Della Campania, 3(1). Retrieved from https://topic.oprc.it/index.php/topic/article/view/77